A gain-of-function mutation in oma-1, a C. elegans gene required for oocyte maturation, results in delayed degradation of maternal proteins and embryonic lethality.

نویسنده

  • Rueyling Lin
چکیده

In vertebrates, oocytes undergo maturation, arrest in metaphase II, and can then be fertilized by sperm. Fertilization initiates molecular events that lead to the activation of early embryonic development. In Caenorhabditis elegans, where no delay between oocyte maturation and fertilization is apparent, oocyte maturation and fertilization must be tightly coordinated. It is not clear what coordinates the transition from an oocyte to an embryo in C. elegans, but regulated turnover of oocyte-specific proteins contributes to the process. We describe here a gain-of-function mutation (zu405) in a gene that is essential for oocyte maturation, oma-1. In wild type animals, OMA-1 protein is expressed at a high level exclusively in oocytes and newly fertilized embryos and is degraded rapidly after the first mitotic division. The zu405 mutation results in improper degradation of the OMA-1 protein in embryos. In oma-1(zu405) embryos, the C blastomere is transformed to the EMS blastomere fate, resulting in embryonic lethality. We show that degradation of several maternally supplied cell fate determinants, including SKN-1, PIE-1, MEX-3, and MEX-5, is delayed in oma-1(zu405) mutant embryos. In wild type embryos, SKN-1 functions in EMS for EMS blastomere fate specification. A decreased level of maternal SKN-1 protein in the C blastomere relative to EMS is believed to be responsible for this cell expressing the C, instead of the EMS, fate. Delayed degradation of maternal SKN-1 protein in oma-1(zu405) embryos and resultant elevated levels in C blastomere is likely responsible for the observed C-to-EMS blastomere fate transformation. These observations suggest that oma-1, in addition to its role in oocyte maturation, contributes to early embryonic development by regulating the temporal degradation of maternal proteins in early C. elegans embryos.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

DYRK2 and GSK-3 phosphorylate and promote the timely degradation of OMA-1, a key regulator of the oocyte-to-embryo transition in C. elegans.

Oocyte maturation and fertilization initiates a dynamic and tightly regulated process in which a non-dividing oocyte is transformed into a rapidly dividing embryo. We have shown previously that two C. elegans CCCH zinc finger proteins, OMA-1 and OMA-2, have an essential and redundant function in oocyte maturation. Both OMA-1 and OMA-2 are expressed only in oocytes and 1-cell embryos, and need t...

متن کامل

Two zinc finger proteins, OMA-1 and OMA-2, are redundantly required for oocyte maturation in C. elegans.

Oocytes are released from meiotic prophase I arrest through a process termed oocyte maturation. We present here a genetic characterization of oocyte maturation, using C. elegans as a model system. We show that two TIS11 zinc finger-containing proteins, OMA-1 and OMA-2, express specifically in maturing oocytes and function redundantly in oocyte maturation. Oocytes in oma-1;oma-2 mutants initiate...

متن کامل

The C. elegans DYRK Kinase MBK-2 Marks Oocyte Proteins for Degradation in Response to Meiotic Maturation

The oocyte-to-embryo transition transforms a differentiated germ cell into a totipotent zygote capable of somatic development. In C. elegans, several oocyte proteins, including the meiotic katanin subunit MEI-1 and the oocyte maturation protein OMA-1, must be degraded during this transition . Degradation of MEI-1 and OMA-1 requires the dual-specificity YAK-1-related (DYRK) kinase MBK-2 . Here, ...

متن کامل

Time Course of Degradation and Deadenylation of Maternal c-mos and Cyclin A2 mRNA during Early Development of One-Cell Embryo in Mouse

Early in the development of many animals, before transcription begins, any change in the pattern of protein synthesis is attributed to a change in the translational activity or stability of mRNA in the egg and early embryo. As a result, translational control is critical for a variety of developmental decisions, including oocyte maturation and initiation of preimplantation development. In this s...

متن کامل

The Conserved Kinases CDK-1, GSK-3, KIN-19, and MBK-2 Promote OMA-1 Destruction to Regulate the Oocyte-to-Embryo Transition in C. elegans

BACKGROUND At the onset of embryogenesis, key developmental regulators called determinants are activated asymmetrically to specify the body axes and tissue layers. In C. elegans, this process is regulated in part by a conserved family of CCCH-type zinc finger proteins that specify the fates of early embryonic cells. The asymmetric localization of these and other determinants is regulated in ear...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Developmental biology

دوره 258 1  شماره 

صفحات  -

تاریخ انتشار 2003